3.1.91 \(\int \frac {(a+b x+c x^2)^{3/2}}{1-x^2} \, dx\) [91]

Optimal. Leaf size=189 \[ -\frac {1}{4} (5 b+2 c x) \sqrt {a+b x+c x^2}-\frac {1}{2} (a-b+c)^{3/2} \tanh ^{-1}\left (\frac {2 a-b+(b-2 c) x}{2 \sqrt {a-b+c} \sqrt {a+b x+c x^2}}\right )-\frac {\left (3 b^2+12 a c+8 c^2\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 \sqrt {c}}+\frac {1}{2} (a+b+c)^{3/2} \tanh ^{-1}\left (\frac {2 a+b+(b+2 c) x}{2 \sqrt {a+b+c} \sqrt {a+b x+c x^2}}\right ) \]

[Out]

-1/2*(a-b+c)^(3/2)*arctanh(1/2*(2*a-b+(b-2*c)*x)/(a-b+c)^(1/2)/(c*x^2+b*x+a)^(1/2))+1/2*(a+b+c)^(3/2)*arctanh(
1/2*(2*a+b+(b+2*c)*x)/(a+b+c)^(1/2)/(c*x^2+b*x+a)^(1/2))-1/8*(12*a*c+3*b^2+8*c^2)*arctanh(1/2*(2*c*x+b)/c^(1/2
)/(c*x^2+b*x+a)^(1/2))/c^(1/2)-1/4*(2*c*x+5*b)*(c*x^2+b*x+a)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.18, antiderivative size = 189, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 6, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {992, 1092, 635, 212, 1047, 738} \begin {gather*} -\frac {\left (12 a c+3 b^2+8 c^2\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 \sqrt {c}}-\frac {1}{4} (5 b+2 c x) \sqrt {a+b x+c x^2}-\frac {1}{2} (a-b+c)^{3/2} \tanh ^{-1}\left (\frac {2 a+x (b-2 c)-b}{2 \sqrt {a-b+c} \sqrt {a+b x+c x^2}}\right )+\frac {1}{2} (a+b+c)^{3/2} \tanh ^{-1}\left (\frac {2 a+x (b+2 c)+b}{2 \sqrt {a+b+c} \sqrt {a+b x+c x^2}}\right ) \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + b*x + c*x^2)^(3/2)/(1 - x^2),x]

[Out]

-1/4*((5*b + 2*c*x)*Sqrt[a + b*x + c*x^2]) - ((a - b + c)^(3/2)*ArcTanh[(2*a - b + (b - 2*c)*x)/(2*Sqrt[a - b
+ c]*Sqrt[a + b*x + c*x^2])])/2 - ((3*b^2 + 12*a*c + 8*c^2)*ArcTanh[(b + 2*c*x)/(2*Sqrt[c]*Sqrt[a + b*x + c*x^
2])])/(8*Sqrt[c]) + ((a + b + c)^(3/2)*ArcTanh[(2*a + b + (b + 2*c)*x)/(2*Sqrt[a + b + c]*Sqrt[a + b*x + c*x^2
])])/2

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 635

Int[1/Sqrt[(a_) + (b_.)*(x_) + (c_.)*(x_)^2], x_Symbol] :> Dist[2, Subst[Int[1/(4*c - x^2), x], x, (b + 2*c*x)
/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 738

Int[1/(((d_.) + (e_.)*(x_))*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x_Symbol] :> Dist[-2, Subst[Int[1/(4*c*d
^2 - 4*b*d*e + 4*a*e^2 - x^2), x], x, (2*a*e - b*d - (2*c*d - b*e)*x)/Sqrt[a + b*x + c*x^2]], x] /; FreeQ[{a,
b, c, d, e}, x] && NeQ[b^2 - 4*a*c, 0] && NeQ[2*c*d - b*e, 0]

Rule 992

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_)*((d_.) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp[(b*(3*p + 2*q) + 2
*c*(p + q)*x)*(a + b*x + c*x^2)^(p - 1)*((d + f*x^2)^(q + 1)/(2*f*(p + q)*(2*p + 2*q + 1))), x] - Dist[1/(2*f*
(p + q)*(2*p + 2*q + 1)), Int[(a + b*x + c*x^2)^(p - 2)*(d + f*x^2)^q*Simp[b^2*d*(p - 1)*(2*p + q) - (p + q)*(
b^2*d*(1 - p) - 2*a*(c*d - a*f*(2*p + 2*q + 1))) - (2*b*(c*d - a*f)*(1 - p)*(2*p + q) - 2*(p + q)*b*(2*c*d*(2*
p + q) - (c*d + a*f)*(2*p + 2*q + 1)))*x + (b^2*f*p*(1 - p) + 2*c*(p + q)*(c*d*(2*p - 1) - a*f*(4*p + 2*q - 1)
))*x^2, x], x], x] /; FreeQ[{a, b, c, d, f, q}, x] && NeQ[b^2 - 4*a*c, 0] && GtQ[p, 1] && NeQ[p + q, 0] && NeQ
[2*p + 2*q + 1, 0] &&  !IGtQ[p, 0] &&  !IGtQ[q, 0]

Rule 1047

Int[((g_.) + (h_.)*(x_))/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
 = Rt[(-a)*c, 2]}, Dist[h/2 + c*(g/(2*q)), Int[1/((-q + c*x)*Sqrt[d + e*x + f*x^2]), x], x] + Dist[h/2 - c*(g/
(2*q)), Int[1/((q + c*x)*Sqrt[d + e*x + f*x^2]), x], x]] /; FreeQ[{a, c, d, e, f, g, h}, x] && NeQ[e^2 - 4*d*f
, 0] && PosQ[(-a)*c]

Rule 1092

Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(((a_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (e_.)*(x_) + (f_.)*(x_)^2]), x_Sym
bol] :> Dist[C/c, Int[1/Sqrt[d + e*x + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C + B*c*x)/((a + c*x^2)*Sqrt[d
+ e*x + f*x^2]), x], x] /; FreeQ[{a, c, d, e, f, A, B, C}, x] && NeQ[e^2 - 4*d*f, 0]

Rubi steps

\begin {align*} \int \frac {\left (a+b x+c x^2\right )^{3/2}}{1-x^2} \, dx &=-\frac {1}{4} (5 b+2 c x) \sqrt {a+b x+c x^2}+\frac {1}{2} \int \frac {\frac {1}{4} \left (8 a^2+5 b^2+4 a c\right )+4 b (a+c) x+\frac {1}{4} \left (3 b^2+12 a c+8 c^2\right ) x^2}{\left (1-x^2\right ) \sqrt {a+b x+c x^2}} \, dx\\ &=-\frac {1}{4} (5 b+2 c x) \sqrt {a+b x+c x^2}-\frac {1}{2} \int \frac {\frac {1}{4} \left (-8 a^2-5 b^2-4 a c\right )+\frac {1}{4} \left (-3 b^2-12 a c-8 c^2\right )-4 b (a+c) x}{\left (1-x^2\right ) \sqrt {a+b x+c x^2}} \, dx+\frac {1}{8} \left (-3 b^2-12 a c-8 c^2\right ) \int \frac {1}{\sqrt {a+b x+c x^2}} \, dx\\ &=-\frac {1}{4} (5 b+2 c x) \sqrt {a+b x+c x^2}-\frac {1}{2} (a-b+c)^2 \int \frac {1}{(-1-x) \sqrt {a+b x+c x^2}} \, dx+\frac {1}{2} (a+b+c)^2 \int \frac {1}{(1-x) \sqrt {a+b x+c x^2}} \, dx+\frac {1}{4} \left (-3 b^2-12 a c-8 c^2\right ) \text {Subst}\left (\int \frac {1}{4 c-x^2} \, dx,x,\frac {b+2 c x}{\sqrt {a+b x+c x^2}}\right )\\ &=-\frac {1}{4} (5 b+2 c x) \sqrt {a+b x+c x^2}-\frac {\left (3 b^2+12 a c+8 c^2\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 \sqrt {c}}+(a-b+c)^2 \text {Subst}\left (\int \frac {1}{4 a-4 b+4 c-x^2} \, dx,x,\frac {-2 a+b-(b-2 c) x}{\sqrt {a+b x+c x^2}}\right )-(a+b+c)^2 \text {Subst}\left (\int \frac {1}{4 a+4 b+4 c-x^2} \, dx,x,\frac {-2 a-b-(b+2 c) x}{\sqrt {a+b x+c x^2}}\right )\\ &=-\frac {1}{4} (5 b+2 c x) \sqrt {a+b x+c x^2}-\frac {1}{2} (a-b+c)^{3/2} \tanh ^{-1}\left (\frac {2 a-b+(b-2 c) x}{2 \sqrt {a-b+c} \sqrt {a+b x+c x^2}}\right )-\frac {\left (3 b^2+12 a c+8 c^2\right ) \tanh ^{-1}\left (\frac {b+2 c x}{2 \sqrt {c} \sqrt {a+b x+c x^2}}\right )}{8 \sqrt {c}}+\frac {1}{2} (a+b+c)^{3/2} \tanh ^{-1}\left (\frac {2 a+b+(b+2 c) x}{2 \sqrt {a+b+c} \sqrt {a+b x+c x^2}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.65, size = 187, normalized size = 0.99 \begin {gather*} -\frac {1}{4} (5 b+2 c x) \sqrt {a+x (b+c x)}-(-a+b-c)^{3/2} \tan ^{-1}\left (\frac {\sqrt {c} (1+x)-\sqrt {a+x (b+c x)}}{\sqrt {-a+b-c}}\right )-(-a-b-c)^{3/2} \tan ^{-1}\left (\frac {-\sqrt {c} (-1+x)+\sqrt {a+x (b+c x)}}{\sqrt {-a-b-c}}\right )+\frac {\left (3 b^2+4 c (3 a+2 c)\right ) \log \left (b+2 c x-2 \sqrt {c} \sqrt {a+x (b+c x)}\right )}{8 \sqrt {c}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x + c*x^2)^(3/2)/(1 - x^2),x]

[Out]

-1/4*((5*b + 2*c*x)*Sqrt[a + x*(b + c*x)]) - (-a + b - c)^(3/2)*ArcTan[(Sqrt[c]*(1 + x) - Sqrt[a + x*(b + c*x)
])/Sqrt[-a + b - c]] - (-a - b - c)^(3/2)*ArcTan[(-(Sqrt[c]*(-1 + x)) + Sqrt[a + x*(b + c*x)])/Sqrt[-a - b - c
]] + ((3*b^2 + 4*c*(3*a + 2*c))*Log[b + 2*c*x - 2*Sqrt[c]*Sqrt[a + x*(b + c*x)]])/(8*Sqrt[c])

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(567\) vs. \(2(155)=310\).
time = 0.16, size = 568, normalized size = 3.01 Too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+b*x+a)^(3/2)/(-x^2+1),x,method=_RETURNVERBOSE)

[Out]

-1/6*((-1+x)^2*c+(b+2*c)*(-1+x)+a+b+c)^(3/2)-1/4*(b+2*c)*(1/4*(2*c*(-1+x)+b+2*c)/c*((-1+x)^2*c+(b+2*c)*(-1+x)+
a+b+c)^(1/2)+1/8*(4*c*(a+b+c)-(b+2*c)^2)/c^(3/2)*ln((1/2*b+c+c*(-1+x))/c^(1/2)+((-1+x)^2*c+(b+2*c)*(-1+x)+a+b+
c)^(1/2)))-1/2*(a+b+c)*(((-1+x)^2*c+(b+2*c)*(-1+x)+a+b+c)^(1/2)+1/2*(b+2*c)*ln((1/2*b+c+c*(-1+x))/c^(1/2)+((-1
+x)^2*c+(b+2*c)*(-1+x)+a+b+c)^(1/2))/c^(1/2)-(a+b+c)^(1/2)*ln((2*a+2*b+2*c+(b+2*c)*(-1+x)+2*(a+b+c)^(1/2)*((-1
+x)^2*c+(b+2*c)*(-1+x)+a+b+c)^(1/2))/(-1+x)))+1/6*((1+x)^2*c+(b-2*c)*(1+x)+a-b+c)^(3/2)+1/4*(b-2*c)*(1/4*(2*c*
(1+x)+b-2*c)/c*((1+x)^2*c+(b-2*c)*(1+x)+a-b+c)^(1/2)+1/8*(4*c*(a-b+c)-(b-2*c)^2)/c^(3/2)*ln((1/2*b-c+c*(1+x))/
c^(1/2)+((1+x)^2*c+(b-2*c)*(1+x)+a-b+c)^(1/2)))+1/2*(a-b+c)*(((1+x)^2*c+(b-2*c)*(1+x)+a-b+c)^(1/2)+1/2*(b-2*c)
*ln((1/2*b-c+c*(1+x))/c^(1/2)+((1+x)^2*c+(b-2*c)*(1+x)+a-b+c)^(1/2))/c^(1/2)-(a-b+c)^(1/2)*ln((2*a-2*b+2*c+(b-
2*c)*(1+x)+2*(a-b+c)^(1/2)*((1+x)^2*c+(b-2*c)*(1+x)+a-b+c)^(1/2))/(1+x)))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(-x^2+1),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(4*a*c-b^2>0)', see `assume?` f
or more deta

________________________________________________________________________________________

Fricas [A]
time = 94.79, size = 2579, normalized size = 13.65 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(-x^2+1),x, algorithm="fricas")

[Out]

[1/16*((3*b^2 + 12*a*c + 8*c^2)*sqrt(c)*log(-8*c^2*x^2 - 8*b*c*x - b^2 + 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*s
qrt(c) - 4*a*c) + 4*((a - b)*c + c^2)*sqrt(a - b + c)*log(-((b^2 + 4*(a - 2*b)*c + 8*c^2)*x^2 - 4*sqrt(c*x^2 +
 b*x + a)*((b - 2*c)*x + 2*a - b)*sqrt(a - b + c) + 8*a^2 - 8*a*b + b^2 + 4*a*c + 2*(4*a*b - 3*b^2 - 4*(a - b)
*c)*x)/(x^2 + 2*x + 1)) + 4*((a + b)*c + c^2)*sqrt(a + b + c)*log(-((b^2 + 4*(a + 2*b)*c + 8*c^2)*x^2 + 4*sqrt
(c*x^2 + b*x + a)*((b + 2*c)*x + 2*a + b)*sqrt(a + b + c) + 8*a^2 + 8*a*b + b^2 + 4*a*c + 2*(4*a*b + 3*b^2 + 4
*(a + b)*c)*x)/(x^2 - 2*x + 1)) - 4*(2*c^2*x + 5*b*c)*sqrt(c*x^2 + b*x + a))/c, -1/16*(8*((a - b)*c + c^2)*sqr
t(-a + b - c)*arctan(-1/2*sqrt(c*x^2 + b*x + a)*((b - 2*c)*x + 2*a - b)*sqrt(-a + b - c)/(((a - b)*c + c^2)*x^
2 + a^2 - a*b + a*c + (a*b - b^2 + b*c)*x)) - (3*b^2 + 12*a*c + 8*c^2)*sqrt(c)*log(-8*c^2*x^2 - 8*b*c*x - b^2
+ 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*c) - 4*((a + b)*c + c^2)*sqrt(a + b + c)*log(-((b^2 + 4*(a
 + 2*b)*c + 8*c^2)*x^2 + 4*sqrt(c*x^2 + b*x + a)*((b + 2*c)*x + 2*a + b)*sqrt(a + b + c) + 8*a^2 + 8*a*b + b^2
 + 4*a*c + 2*(4*a*b + 3*b^2 + 4*(a + b)*c)*x)/(x^2 - 2*x + 1)) + 4*(2*c^2*x + 5*b*c)*sqrt(c*x^2 + b*x + a))/c,
 -1/16*(8*((a + b)*c + c^2)*sqrt(-a - b - c)*arctan(1/2*sqrt(c*x^2 + b*x + a)*((b + 2*c)*x + 2*a + b)*sqrt(-a
- b - c)/(((a + b)*c + c^2)*x^2 + a^2 + a*b + a*c + (a*b + b^2 + b*c)*x)) - (3*b^2 + 12*a*c + 8*c^2)*sqrt(c)*l
og(-8*c^2*x^2 - 8*b*c*x - b^2 + 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*c) - 4*((a - b)*c + c^2)*sqr
t(a - b + c)*log(-((b^2 + 4*(a - 2*b)*c + 8*c^2)*x^2 - 4*sqrt(c*x^2 + b*x + a)*((b - 2*c)*x + 2*a - b)*sqrt(a
- b + c) + 8*a^2 - 8*a*b + b^2 + 4*a*c + 2*(4*a*b - 3*b^2 - 4*(a - b)*c)*x)/(x^2 + 2*x + 1)) + 4*(2*c^2*x + 5*
b*c)*sqrt(c*x^2 + b*x + a))/c, -1/16*(8*((a - b)*c + c^2)*sqrt(-a + b - c)*arctan(-1/2*sqrt(c*x^2 + b*x + a)*(
(b - 2*c)*x + 2*a - b)*sqrt(-a + b - c)/(((a - b)*c + c^2)*x^2 + a^2 - a*b + a*c + (a*b - b^2 + b*c)*x)) + 8*(
(a + b)*c + c^2)*sqrt(-a - b - c)*arctan(1/2*sqrt(c*x^2 + b*x + a)*((b + 2*c)*x + 2*a + b)*sqrt(-a - b - c)/((
(a + b)*c + c^2)*x^2 + a^2 + a*b + a*c + (a*b + b^2 + b*c)*x)) - (3*b^2 + 12*a*c + 8*c^2)*sqrt(c)*log(-8*c^2*x
^2 - 8*b*c*x - b^2 + 4*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(c) - 4*a*c) + 4*(2*c^2*x + 5*b*c)*sqrt(c*x^2 + b
*x + a))/c, 1/8*((3*b^2 + 12*a*c + 8*c^2)*sqrt(-c)*arctan(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*
x^2 + b*c*x + a*c)) + 2*((a - b)*c + c^2)*sqrt(a - b + c)*log(-((b^2 + 4*(a - 2*b)*c + 8*c^2)*x^2 - 4*sqrt(c*x
^2 + b*x + a)*((b - 2*c)*x + 2*a - b)*sqrt(a - b + c) + 8*a^2 - 8*a*b + b^2 + 4*a*c + 2*(4*a*b - 3*b^2 - 4*(a
- b)*c)*x)/(x^2 + 2*x + 1)) + 2*((a + b)*c + c^2)*sqrt(a + b + c)*log(-((b^2 + 4*(a + 2*b)*c + 8*c^2)*x^2 + 4*
sqrt(c*x^2 + b*x + a)*((b + 2*c)*x + 2*a + b)*sqrt(a + b + c) + 8*a^2 + 8*a*b + b^2 + 4*a*c + 2*(4*a*b + 3*b^2
 + 4*(a + b)*c)*x)/(x^2 - 2*x + 1)) - 2*(2*c^2*x + 5*b*c)*sqrt(c*x^2 + b*x + a))/c, -1/8*(4*((a - b)*c + c^2)*
sqrt(-a + b - c)*arctan(-1/2*sqrt(c*x^2 + b*x + a)*((b - 2*c)*x + 2*a - b)*sqrt(-a + b - c)/(((a - b)*c + c^2)
*x^2 + a^2 - a*b + a*c + (a*b - b^2 + b*c)*x)) - (3*b^2 + 12*a*c + 8*c^2)*sqrt(-c)*arctan(1/2*sqrt(c*x^2 + b*x
 + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x + a*c)) - 2*((a + b)*c + c^2)*sqrt(a + b + c)*log(-((b^2 + 4*(a +
2*b)*c + 8*c^2)*x^2 + 4*sqrt(c*x^2 + b*x + a)*((b + 2*c)*x + 2*a + b)*sqrt(a + b + c) + 8*a^2 + 8*a*b + b^2 +
4*a*c + 2*(4*a*b + 3*b^2 + 4*(a + b)*c)*x)/(x^2 - 2*x + 1)) + 2*(2*c^2*x + 5*b*c)*sqrt(c*x^2 + b*x + a))/c, -1
/8*(4*((a + b)*c + c^2)*sqrt(-a - b - c)*arctan(1/2*sqrt(c*x^2 + b*x + a)*((b + 2*c)*x + 2*a + b)*sqrt(-a - b
- c)/(((a + b)*c + c^2)*x^2 + a^2 + a*b + a*c + (a*b + b^2 + b*c)*x)) - (3*b^2 + 12*a*c + 8*c^2)*sqrt(-c)*arct
an(1/2*sqrt(c*x^2 + b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x + a*c)) - 2*((a - b)*c + c^2)*sqrt(a - b +
c)*log(-((b^2 + 4*(a - 2*b)*c + 8*c^2)*x^2 - 4*sqrt(c*x^2 + b*x + a)*((b - 2*c)*x + 2*a - b)*sqrt(a - b + c) +
 8*a^2 - 8*a*b + b^2 + 4*a*c + 2*(4*a*b - 3*b^2 - 4*(a - b)*c)*x)/(x^2 + 2*x + 1)) + 2*(2*c^2*x + 5*b*c)*sqrt(
c*x^2 + b*x + a))/c, -1/8*(4*((a - b)*c + c^2)*sqrt(-a + b - c)*arctan(-1/2*sqrt(c*x^2 + b*x + a)*((b - 2*c)*x
 + 2*a - b)*sqrt(-a + b - c)/(((a - b)*c + c^2)*x^2 + a^2 - a*b + a*c + (a*b - b^2 + b*c)*x)) + 4*((a + b)*c +
 c^2)*sqrt(-a - b - c)*arctan(1/2*sqrt(c*x^2 + b*x + a)*((b + 2*c)*x + 2*a + b)*sqrt(-a - b - c)/(((a + b)*c +
 c^2)*x^2 + a^2 + a*b + a*c + (a*b + b^2 + b*c)*x)) - (3*b^2 + 12*a*c + 8*c^2)*sqrt(-c)*arctan(1/2*sqrt(c*x^2
+ b*x + a)*(2*c*x + b)*sqrt(-c)/(c^2*x^2 + b*c*x + a*c)) + 2*(2*c^2*x + 5*b*c)*sqrt(c*x^2 + b*x + a))/c]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} - \int \frac {a \sqrt {a + b x + c x^{2}}}{x^{2} - 1}\, dx - \int \frac {b x \sqrt {a + b x + c x^{2}}}{x^{2} - 1}\, dx - \int \frac {c x^{2} \sqrt {a + b x + c x^{2}}}{x^{2} - 1}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+b*x+a)**(3/2)/(-x**2+1),x)

[Out]

-Integral(a*sqrt(a + b*x + c*x**2)/(x**2 - 1), x) - Integral(b*x*sqrt(a + b*x + c*x**2)/(x**2 - 1), x) - Integ
ral(c*x**2*sqrt(a + b*x + c*x**2)/(x**2 - 1), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+b*x+a)^(3/2)/(-x^2+1),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Error: Bad Argument Type

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} -\int \frac {{\left (c\,x^2+b\,x+a\right )}^{3/2}}{x^2-1} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(a + b*x + c*x^2)^(3/2)/(x^2 - 1),x)

[Out]

-int((a + b*x + c*x^2)^(3/2)/(x^2 - 1), x)

________________________________________________________________________________________